
Parallel Genetic Algorithms on Line Topology of
Heterogeneous Computing Resources

Yiyuan Gong
Faculty of Information

Engineering, University of the
Ryukyus

Okinawa 903-0213 Japan

gongyy@ads.ie.u-
ryukyu.ac.jp

Morikazu Nakamura
Faculty of Information

Engineering, University of the
Ryukyus

Okinawa 903-0213 Japan

morikazu@ie.u-
ryukyu.ac.jp

Shiro Tamaki
Faculty of Information

Engineering, University of the
Ryukyus

Okinawa 903-0213 Japan

shiro@ie.u-ryukyu.ac.jp

ABSTRACT
This paper evaluates a parallel genetic algorithm (GA) on
the line topology of heterogeneous computing resources. Evo-
lution process of parallel GAs is investigated on two types
of arrangements of heterogeneous computing resources: the
ascending and descending order arrangement of computing
capability. Their differences in chromosome variety, migra-
tion frequency and solution quality are investigated. The
results in this paper can help to design parallel GAs in grid
computing environments.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
Miscellaneous

General Terms
Algorithms, Design

Keywords
parallel genetic algorithm, migration interval, heterogeneous
computing capability, grid

1. INTRODUCTION
In recent years, a grid has been becoming a promising

computing environment for large scale computation [4]. Since
a grid can provide many computational resources, researchers
are interested in solving their large scale computing prob-
lems on a computational grid. A grid can include hetero-
geneous computing resources and various network media.
Therefore, the capability of computing nodes is different and
the network bandwidth between nodes is not uniform.

Since Genetic Algorithms (GAs) require usually lots of
computation time, there are many reports on parallel GAs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

However, when we solve very large scale optimization prob-
lems, we need tremendous computing resources. Therefore,
it is straightforward to implement parallel GAs on a grid.
Recently, some researchers have studied GAs on a grid [6] [7].
In [6] they present an efficient model of master/slave com-
puting in grid environments. In [7] they propose a frame-
work for researchers to easily develop GAs in a grid.

The purpose of our research is to develop efficient schemes
of parallel GAs in grid computing environments to solve very
large scale optimization problems. Gong [11] developed a
parallel GA with a tree-based migration, which is an island
model, but the migration is performed through logical tree-
topology network.

A logical tree-topology network is established on a set of
computing nodes in which we can set a logical link if two
nodes can communicate each other. Note that we can estab-
lish any logical topology, even completely-connected topol-
ogy, on (a part of) the Internet but it is important to con-
sider the physical network underlying the logical topology
since the communication delay of the logical link depends
on the physical network. The reason we employ tree topolo-
gies is that those can be easily implemented and extended
in real network environments with considering the network
latency. Note that tree-topologies are various: not only a
balanced binary tree but also a line and a star are a kind of
tree-topologies.

Previously, Gong [11] investigated the effects of topolo-
gies and delay for parallel GA execution in distributed en-
vironments. In that paper, four types of tree-topologies:
star, line, balanced binary tree and sided binary tree were
examined. From the experimental results, we found that
the cooperative evolution among nodes contributes to solu-
tion quality and the line topology performs the best among
the four topologies from the viewpoint of solution quality.

However, in [11], we assumed an ideal situation that all
the computing resources have the same computing capabil-
ity, but in the real system, it cannot be the same. Therefore,
in this paper, we investigate the case of heterogeneous com-
puting resources. In this case, it is natural to think that the
arrangement of heterogeneous computing resources should
affect the performance of parallel GAs. Here, we consider
the line topology since it is the simplest and showed the
good performance in our previous evaluation [11].

In this paper, we use a continuous multimodal landscape
generator based on Gaussian functions [1] to generate test

1447

problems. Traditional function optimization problems such
as Schwefel functions, Griewank functions and Rastrigin func-
tions [3] are additionally used. A real-coded GA with UNDX
[10] crossover and MGG [9] alternation model is implemented
for optimization of Gaussian functions and a binary-coded
GA for the traditional functions.

This paper is organized as follows: In Sect.2, we present
our parallel GA. We show the experimental results and dis-
cuss on them in Sect.3, and conclude this paper in Sect.4.

2. PARALLEL GA WITH TREE-BASED
MIGRATION

We present a parallel GA, called PDGA in this section.
The PDGA is a distributed parallel GA, that is, an island
model with migration in which the migration is performed
through a logical tree-topology.

A tree-topology is established before execution. When we
use a part of the Internet as a grid computing environment,
any logical topology even the completely connected topol-
ogy can be set. However, because of the communication
latency, usually we need to consider the physical network
topology, namely, we should set a logical link between two
nodes in which they can communicate with small communi-
cation overhead. of communication delay. With considering
communication overhead of the migration topology, we can
say tree topologies are easily implemented and extensible on
real network environments. Moreover, hierarchical structure
of the tree topologies may be useful for cooperative evolu-
tion of parallel GAs. It is why we choose tree-topologies for
the migration.

When we are given a network environment, for example
a part of the Internet, we set a spanning tree with a single
root node, that is, all the computing nodes are included in
the topology in which every node except the root knows its
parent and every node except the leaves knows its children.

Figure 1 is an example of a spanning tree. The arrowed
edges are chosen for the spanning tree.

Figure 1: Example of spanning tree

In our algorithm, each computing node generates its own
initial chromosome set as a subpopulation, and carries out
genetic operations on its subpopulation independently as an
island model. The migration can be performed from a child
to its parent when the migration condition is satisfied. The
migration condition is determined by two factors: the migra-
tion interval and the timing of the current best update. The
migration interval is set before execution, for example, 30,
50, 100 and so on. When the migration interval is 30, each

node tries the migration at every 30 generation. However, it
can perform the migration only when the current best was
updated since the last migration. When a node receives a
chromosome sent from its child, the node replaces the worst
chromosome in his population by the migrated one. The
migration can be described as push type since a child node
pushes its current best to his parent when it is updated (at
the migration interval).

We show the procedure for each computing node when the
target problem is a Gaussian function.

0: procedure PDGA for Gaussian functions;

1: begin

2: Generation no := 0;

3: initialize a subpopulation;

4: evaluation;

5: while(termination condition does not hold)

6: begin

7: randomly select two parents and

apply UNDX crossover;

8: evaluation;

9: select the best and the second chromosomes

from the children and these two parents;

10: replace the original parents by

the selected chromosomes;

11: check the communication buffer;

12: if(received chromosomes) begin

13: replace the worst one

by the received one;

14: endif ;

15: if(migration condition is satisfied)

16: send the best to the parent;

17: endif ;

18: end while;

19: end

3. EXPERIMENTAL EVALUATION
In the experiment, we evaluate effects of arrangements of

heterogeneous computing resources on cooperative evolution
in our parallel GA. As we described, in this paper we focus
on the line topology since it is the simplest and showed good
performance [11].

3.1 Simulation System
Since it is still difficult to use a real grid environment

for experimental evaluation, we simulate it on a PC-cluster
which is composed of Intel 2.0GHz Xeon processors con-
nected by a fast-ethernet switch. All the processors of the
PC-cluster have the same capability. In order to simulate
heterogeneous computing resources, we insert dummy codes
to the program on a node which simulates a slower com-
puting resource. Let TGA be the execution time of one GA
generation of the fastest node in the resources, and use it
to represent the capability of all the computing nodes. For
example, the number in a node represents the capability in
Figure 2, the root node has the weight 8, it means the node
requires 8TGA to complete one GA generation, and so on.
Therefore, the root node iterates eight times of the same

1448

calculation to simulate 8TGA. We call the coefficient of TGA

capability weight. Note that smaller capability weights cor-
respond to more powerful computing capability.

The parallel program for the PDGA is written in C lan-
guage with MPICH (a MPI-based communication library)
[5].

3.1.1 Test Problems and Parameters
The dimension of Gaussian functions was set to two, and

the number of GFs was 200 in this experimental evaluation.
The range of rotation angle was set to [-π/4, π/4], and the
search space was bounded to [-300, 300] in each dimension.
The range of variance value was set to [0.25, 5.25]. The
problems were generated randomly.

UNDX parameters are set as Kita’s recommends [8]: α is
0.5, β is 0.35 and the number of crossover time is 100.

The dimension was set to 40, one point crossover, one bit
reverse mutation and the roulette selection were used for
the traditional function optimization problems. The elite
reservation was also incorporated.

A parallel GA execution terminates when the root node
terminates. We set the total number of generations to the
leaf nodes beforehand, and each node sends a terminated
message to its parent when it terminates. All the nodes
except the leaves can terminate after they receive terminate
messages from all the children.

All results we show here are the average values of 50 tri-
als. We show here results mainly for Gaussian functions’
optimization.

3.1.2 Arrangement of Heterogeneous Computing
Resources

We ran our algorithm for several arrangements of hetero-
geneous computing nodes.

2345678

G88

1

root leaf

Figure 2: Descending arrangement: G88

Figure 2 shows graphically the arrangement of ‘G88’. The
number in each node represents the capability weight of the
node. An arrow represents the parent-child relation, that
is, the migration direction. The source of an arrow shows
the child and the destination the parent. Table 1 lists all
the arrangements used in the experiments. In the table,
‘Name’ represents the name of the arrangement, ‘Computing
capability’ shows the capability weight of each node, and
note that ‘root’ is the most left node in this column, the ‘leaf’
node is on the most right of this column. ‘Total’ represents
the sum of the capability weights in each arrangement.

For example, the first entry of the table is for G88. There
are eight computing nodes, the capability of the root is eight,
and that of the leaf is one. The arrangement is descending
order of the capability weights from the root to the leaf, that
is, eight to one. The second entry is named as G81. There
are eight nodes and the capability of the root is one. The
arrangement is ascending order of the capability weight from
the root to the leaf. G88 and G81 have the same number in
“Total” since they have the same computing resources, but
the arrangement is opposite.

Table 1: Computing capability of each node
Name Computing capability Total
G88 8 7 6 5 4 3 2 1 36
G81 1 2 3 4 5 6 7 8 36
G66 6 5 4 3 2 1 - - 21
G61 1 2 3 4 5 6 - - 21
G63 3 4 5 6 7 8 - - 33
G68 8 7 6 5 4 3 - - 33
G44 4 3 2 1 - - - - 10
G41 1 2 3 4 - - - - 10
G45 5 6 7 8 - - - - 26
G48 8 7 6 5 - - - - 26

These arrangements can be classified into two types, the
ascending order and the descending order. G41, G45, G61,
G63 and G81 belong to the former, G48, G44, G68, G66,
and G88 the latter. These two arrangement types have the
extreme characteristics and effect differently on cooperative
evolution with the tree-based migration. Therefore, it is
very important to investigate the behavior of the evolution
process of these two extreme arrangement types.

3.2 Ascending vs Descending
First of all, let us observe the difference of the cooper-

ative evolution between the ascending and descending ar-
rangements. Here, we show all the solution curves of G88
and G81 when the migration interval is 50 generation.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800

fit
ne

ss

second

"88.root"
"88.1"
"88.2"
"88.3"
"88.4"
"88.5"
"88.6"
"88.7"

Figure 3: Solution curve of each node in G88

Figure 3 shows the elite (current best) solution curves of
all the nodes in G88, and Figure 4 shows the ones in G81. In
Figure 3, ‘88.root’ corresponds to the curve of the root node,
‘88.1’ is for the second node from the root, ‘88.7’ represents
the leaf node, and so on. For Figure 4, the naming of the
curves is the same as Figure 3. From the two figures we can
say that the root can obtain the best final solution among
the final solutions in all the computing nodes, followed by
‘1’,‘2’,‘3’,‘4’,‘5’,‘6’, and ‘7’. That is, the upper the node, the
better the final result. It is obvious that the capability of
the computing node influences the rising time of the solution
curve. The solution curves of nodes with weaker capability
rise more slowly. From Figure 3, it is also obvious that the

1449

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800

fit
ne

ss

second

"81.root"
"81.1"
"81.2"
"81.3"
"81.4"
"81.5"
"81.6"
"81.7"

Figure 4: Solution curve of each node in G81

curves of upper nodes rise slower than ones of the lower
nodes at the early stage (about 80 seconds before). This is
because in G88 the upper nodes have weaker power than the
lower nodes. However, they take over the lower nodes after
receiving the elite solutions from their children. The upper
nodes have the stronger capability in G81, thus in Figure
4 the solution curves of upper nodes rise earlier, and when
elite solutions are transfered to the upper nodes, they can
keep ahead. We also find the same properties in the other
arrangements even though we just show the results of G88
and G81.

3.3 Scaling of Computing Resources
We observed here how evolution process is influenced when

we increase computing resources in the two types of arrange-
ment, the ascending order and the descending order.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250 300 350 400 450

fit
ne

ss

second

"41.root"
"61.root"
"81.root"
"48.root"
"68.root"
"88.root"

Figure 5: Root solution curves with migration in-
terval 1

Figure 5 shows the elite solution curves of the root node
for the six arrangements when the migration interval is 1,
and Figure 6 depicts the same curves when the migration
interval is 50. In the figures, ‘xy.root’ represents the elite so-
lution curve of the root in Gxy. From Figure 5, we observed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800

fit
ne

ss

second

"48.root"
"68.root"
"88.root"
"41.root"
"61.root"
"81.root"

Figure 6: Root solution curves with migration in-
terval 50

that in the ascending arrangements of capability weight, G61
obtained better results than G41, and G81 is better than
G61. This means that adding weaker power nodes to the
end of the ascending order can contribute to improve so-
lution quality. However, we also find that G68 got better
results than G48, but G88 obtained almost the same result
as ‘48’. That is, adding computing resources to the end of
the descending order do not straightforwardly contribute to
evolution process, especially when the migration interval is
short. This is because adding more powerful nodes to the
leaf side brings much aggressive migration, especially when
the migration interval is short. As we know, too aggressive
migration may lead to excessively fast convergence, and the
quality of solutions seems to be negatively affected [2].

From Figure 6, we find that increasing computing nodes
can improve solution quality in these two arrangements when
the migration interval is appropriately long.

3.4 Chromosome Diversity

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500

va
rie

ty

generation

"48.vaty"
"68.vaty"
"88.vaty"
"41.vaty"
"61.vaty"
"81.vaty"

Figure 7: Root variety curves with migration inter-
val 1

Let us see the variety curves of the root node for some
arrangements by varying the migration interval. The vari-

1450

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 500 1000 1500 2000 2500

va
rie

ty

generation

"48.vaty"
"68.vaty"
"88.vaty"
"41.vaty"
"61.vaty"
"81.vaty"

Figure 8: Root variety curves with migration inter-
val 50

ety means here the number of different chromosomes in the
node. At every generation we counted the variety of each
node in the experiment. In Figure 7 and 8, ‘xy.vaty’ repre-
sents the root variety curve of Gxy. Note that the horizontal
axis is ‘generation’ but not ‘time’. Therefore, the curves of
the descending arrangements stopped at earlier generations
since the root nodes of the arrangements are faster than
those of the ascending arrangements even though the com-
putation time is almost the same.

Figure 7 and 8 show the variety curves when the migra-
tion interval is 1 and 50, respectively. From Figure 7, we
can see that the ascending arrangements keep variety better
than descending ones before about 500 generations. This
is because in the descending groups, the evolution speed of
lower nodes is faster than upper nodes and the migration
speed to the root is faster compared to the evolution speed
at the root. When the migration interval is shorter, they
become more evident. That is, frequent migrations should
lead to fast convergence.

Table 2: Average chromosome variety of ascending
groups

G41 G61 G81
gen span mig1 mig50 mig1 mig50 mig1 mig50
1∼300 17.41 16.11 17.13 16.52 16.75 15.87
300∼600 4.14 5.17 4.91 4.97 4.23 5.08
600∼900 2.08 2.97 1.98 3.10 1.90 2.98

However, Figure 8 shows different feature from Figure 7.
In order to see more clearly the chromosome variety in the
ascending arrangements, we show the average chromosome
variety of the arrangements in Table 2 when the migration
interval is 1 and 50. ‘gen span’ means the generation span,
‘1∼300’ row represents the average chromosome variety from
generation 1 to 300, and the same for the rest. The chromo-
some variety of interval 50 is worse before 300 generations
than that of interval 1, however, it becomes better after 300
generations, and the difference between those two migra-
tion intervals increases when the generation comes to 900.

This can be explained as follows: in the ascending arrange-
ments, lower nodes evolve chromosomes slower than upper
nodes, so migration chromosomes are transfered much more
slowly compared to the evolution of chromosomes at the
root. When the migration interval is long, this situation
can be evident. That is, the root looses the chromosome
variety at earlier stage (before about 300) because of too
passive migration.

However, migration data come later and contribute some
how to improve the variety. We can find in Figure 8 that con-
tinuous up-and-down appear later in the ascending groups
when the migration interval is 50.

Thus, from these two figures, we can conclude that too
aggressive migration reduces chromosome variety in the de-
scending arrangements and passive migration for the ascend-
ing arrangements also leads to less variety of chromosomes
at the early stage.

We show another example in Figure 9 to confirm our con-
sideration above. In Figure 9, ‘xy migz.vaty’ represents the
the variety curve of the root node in Gxy with migration
interval z. We can see that the variety of the root in G88
becomes better, but the variety of the root in G81 becomes
worse before about 300 generations when we increase the
migration interval from 1 to 50.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500 600

va
rie

ty

generation

"81_mig1.vaty"
"81_mig50.vaty"
"88_mig1.vaty"

"88_mig50.vaty"

Figure 9: Root variety curves with different migra-
tion interval

3.5 Migration Frequency
The migration does not always take place at every mi-

gration interval since it depends on the timing of the cur-
rent best updating. So here we investigate the migration
frequency which represents how many times the migration
occurs during the evolution process. Longer migration in-
terval should lead to lower migration frequency. However,
there are differences between the ascending and descending
arrangements even though they are with the same migration
interval. Under a certain migration interval, if the migration
frequency is higher, it means that the best fitness is updated
more frequently according to our migration condition.

Table 3, 4, 5, 6, and 7 show the number of chromosomes
received at each node when the migration interval is 10, 30
and 50. “0” represents the root node, “1” represents the next
one, the same for the rest. The migration is performed by
communication on a child-parent pair. Therefore, the num-

1451

Table 3: Receive times of G81 and G88
mig10 mig30 mig50

node G81 G88 G81 G88 G81 G88
0 21 9 12 5 9 4
1 21 10 11 6 8 4
2 19 10 10 5 7 4
3 17 11 9 5 7 4
4 17 12 9 6 6 4
5 14 13 8 6 6 4
6 12 16 7 8 5 5
sum 121 81 66 41 48 29
diff 40 25 19

Table 4: Receive times of G61 and G66
mig10 mig30 mig50

node G61 G66 G61 G66 G61 G66
0 20 10 11 5 8 4
1 19 11 11 5 8 4
2 17 12 10 6 7 4
3 16 13 9 6 6 4
4 14 16 8 8 5 5
sum 86 62 49 30 34 21
diff 24 19 13

ber of receiving equals the number of migrations. The tables
do not include the leaf node since the node does not receive
any chromosome in their migration, they can be a sender.
‘sum’ means the sum of all nodes. ‘diff’ represents the dif-
ference between the two arrangements. We find a common
property such that the migration frequency increases from
the bottom to the root in the ascending arrangements, but
decreases in the descending ones. Another observation is
such that the sum of the received chromosomes in the as-
cending arrangement is bigger than the sum of those in the
descending ones.

Let us look at G81 and G88. The leaf node of G88 is
the most powerful resource node among the arrangement, it
evolves fastest and can send data frequently, however, the
leaf node of G81 is the weakest, the migration frequency
should be low. Thus node 6 (the parent of the leaf) of G88
receives data more frequently than node 6 of G81.

However we find that node 5 of G81 has more number of
receiving than node 5 of G88 even though the power of the
child (node 6) in G81 is weaker than that in G88. Why node
5←6 pair of G81 performs migration more frequently than
that of G88? The essential difference between both is the
direction of the migration, that is, from a weaker node to a

Table 5: Receive times of G41 and G44
mig10 mig30 mig50

node G41 G44 G41 G44 G41 G44
0 19 12 9 6 7 4
1 17 13 9 6 6 4
2 16 16 8 8 5 5
sum 52 41 26 20 18 13
diff 11 6 5

Table 6: Receive times of G63 and G68
mig10 mig30 mig50

node G63 G68 G63 G68 63 G68
0 19 12 10 6 7 5
1 17 13 9 7 7 5
2 17 13 9 7 6 5
3 14 14 8 7 6 5
4 12 16 7 8 5 5
sum 79 68 43 35 31 25
diff 11 8 6

Table 7: Receive times of G45 and G48
mig10 mig30 mig50

node G45 G48 G45 G48 G45 G48
0 17 13 9 7 6 5
1 14 15 8 8 6 5
2 12 15 7 7 5 5
sum 43 43 24 22 17 15
diff 0 2 2

stronger one or from a stronger node to a weaker one. The
migration frequency becomes higher when the best solution
is updated more frequently. From the results, we can say
that the migration from a weaker node to a stronger node
can make the node evolve more efficiently. In case of the
migration from a stronger node to a weaker node, a child
should send a much better solution to its parent compared
to the average fitness value of its parent, it seems to be not
always so good for the cooperative evolution.

We also observed the difference between G45 and G48
is smaller than that of G41 and G44, and the difference
between G63 and G68 is smaller than G61 and G66. This
is because the power ratios in these groups are smaller than
the other groups. For example, in groups ‘48’ and ‘45’, the
biggest power ratio is 8 to 5, while in groups ‘44’ and ‘41’, it
is 4 to 1. When the computing power is not much different
from each other, the arrangement of computing resources
should give very small influences.

3.6 Solution Quality
In order to investigate the solution quality, we depict two

curves: the elite solution curves of the root node for G81
and G88 in Figure 10 and 11. In Figure 10, ‘81 ncom.best’
represents the best solution curve of G81 when the migration
interval is infinite, that is, no data are migrated between any
pair of nodes. ‘81 migx.root’ represents the elite solution
curve of the root in G81 when the migration interval is x.
For Figure 11, the naming of curves is the same as Figure
10. From these two figures, we find that no migration type,
shown as xy ncom.best, is the worst, thus we can say that
the migration improves solution quality obviously.

We also observe that longer migration interval leads to
slower convergence. Comparing all the migration intervals
except infinity, we find that the case of migration interval
1 gets the worst result, and the solution quality becomes
better when increasing the migration interval. However, so-
lution quality becomes again worse when we increase more.
That is, there exists an appropriate migration interval for
each case.

1452

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800

fit
ne

ss

second

"81_ncom.best"
"81_mig1.root"

"81_mig30.root"
"81_mig50.root"

"81_mig100.root"

Figure 10: Root solution curves of G81

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600 700 800

fit
ne

ss

second

"88_ncom.best"
"88_mig1.root"

"88_mig30.root"
"88_mig50.root"

"88_mig100.root"

Figure 11: Root solution curves of G88

Table 8 shows the final solution values for all the arrange-
ments. Each pair of continuing two entries from the top has
the same total power, but different order arrangement, for
example, G81 and G88, G61 and G66, and so on. In Table
8, we show the fitness values of the best individual at the
end of evolution. Note that they are the average values of 50
trials. ‘1’ in the first row represents the migration interval
is 1, the same for the rest. ‘Ave’ represents the average of
all the migration intervals except infinity.

Comparing G81 and G88, we find that G81 gets better
results than G88 when the migration interval is short, like
‘1’,‘10’,‘30’, or ‘50’. It is also obvious to see that G81 is
much better than G88 when the migration interval is ‘1’.
However, G88 gets better results than G81 when the migra-
tion interval is ‘100’. We find the similar property for the
other two pairs (G41 and G44, G61 and G66) also. The
difference between G48 and G45, and that of G63 and G68
are smaller than the other pairs. This is because the power
ratios in these two pairs are small.

From the above data, we can say that migration interval
affects considerably the solution quality. Too short migra-
tion interval leads to fast convergence, and the final solution
is negatively affected, especially for the descending arrange-

ment. Longer migration interval improves the solution qual-
ity for the descending arrangement greatly, and even some
time makes it perform better than the ascending groups.
However, it does not mean the descending groups can al-
ways get better results than the ascending groups when the
migration interval is long. For any arrangement, there is an
appropriate migration interval.

Table 8: Final solution values of all groups

Migration Interval
Name 1 10 30 50 100 150 ∞ Ave
G81 0.72 0.75 0.78 0.87 0.76 0.84 0.41 0.79
G88 0.56 0.72 0.73 0.80 0.80 0.79 0.41 0.74
G61 0.70 0.69 0.80 0.72 0.69 0.71 0.41 0.72
G66 0.55 0.69 0.68 0.73 0.71 0.69 0.41 0.68
G41 0.66 0.65 0.68 0.65 0.69 0.66 0.38 0.66
G44 0.49 0.61 0.57 0.64 0.63 0.59 0.38 0.59
G48 0.57 0.59 0.61 0.63 0.61 0.61 0.41 0.60
G45 0.57 0.52 0.65 0.68 0.62 0.71 0.41 0.63
G68 0.69 0.70 0.70 0.68 0.72 0.71 0.41 0.70
G63 0.63 0.68 0.75 0.83 0.71 0.80 0.41 0.73

3.7 Verification of the other function
optimization problems

We tested our algorithm also on Schwefel function, Griewank
function and Rastrigin function [3]. We show results of
Schwefel function here, it is a minimization problem.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5 6 7 8 9

fit
ne

ss

second

"88_mig1.root"
"88_mig50.root"

"88_mig100.root"
"81_mig1.root"

"81_mig50.root"
"81_mig100.root"

Figure 12: Root solution curves of G81 and G88

Figure 12 shows the elite solution curves of the root node
for G81 and G88 when the migration interval is 1, 50 and
100 generation. We find that the root of G81 get much
better results than the root of G88. We confirm that too
short migration interval affects negatively the final solution
quality, especially for the descending groups.

For chromosome variety and migration frequency, we get
similar properties with Gaussian functions. For Griewank
and Rastrigin functions, we observed similar results.

1453

3.8 Discussion
In this experiment, we investigated the influence of the

arrangements of heterogeneous computing resources on co-
operative evolution in distributed parallel GAs. However,
in this paper we focused on two simple cases of the arrange-
ments, that is, the descending and ascending order arrange-
ments.

In the experimental evaluation, we confirm that in any
pattern of arrangements, our parallel GA on heterogeneous
computing resources evolve cooperatively. However, we also
observe that these two basic arrangements influence cooper-
ative evolution differently.

We find that chromosome variety is influenced by the mi-
gration interval. Especially for the descending groups, mi-
gration interval affects its chromosome variety greatly. Mi-
gration frequency is also different in the descending and as-
cending groups. Migration from weaker nodes to stronger
nodes contributes largely to cooperative evolution.

From our experimental analysis of chromosome variety
and migration frequency, we can conclude that they are im-
portant factors in solution quality because less variety leads
to premature convergence, and receiving much better solu-
tions (comparing to the average fitness value of the parent)
may make the parent similar to its child.

Therefore, we can summarize the experimental results as
follows: The migration is useful for parallel GAs but it
should be carefully designed if computing resources are het-
erogeneous. Because of the imbalance of evolution speed be-
tween a child and a parent, migration may lead to a negative
influence on the evolution process. One possible solution is
to employ the ascending order arrangement of computing
resources. The migration can contribute more safely since
the migration is performed from a weaker node to a stronger
one in this arrangement. This case is harder to receive neg-
ative influence to the evolution process than the case of the
descending order arrangement. For the descending order
arrangement, we need to avoid aggressive migration more
carefully.

We obtained similar results for other test instances with
the same problem size. That is, even though the concrete
values are different, the feature of the effects of the arrange-
ments of computing resources are almost the same. Because
of the space limitation, we omit the numerical results for the
other test problems in this paper.

4. CONCLUDING REMARKS
This paper evaluated a parallel GA on the line topology

of heterogeneous computing resources. Evolution process
of parallel GAs was investigated on two types of arrange-
ments of computing resources: the ascending order and de-
scending order arrangement of computing capability. Their
differences in chromosome variety, migration frequency and
solution quality are investigated. The effects of increasing
computing resources are also clarified. The results in this
paper may facilitate implementation of parallel GAs in grid
computing environments.

As future works, we need to investigate cases of other ar-
rangements on the line topology and to analyze the cooper-
ative evolution theoretically based on a probabilistic model.
And also we will try to implement our parallel GA in a real
grid environment.

5. REFERENCES
[1] B.Yuan and M.Gallagher. On building a principled

framework for evaluating and testing evolutionary
algorithms: A continuous landscape generator.
Congress on Evolutionary computation, pages
451–458, 2003.

[2] Cantu-Paz, D. E, W., and E. J. Migration policies and
takeover times in parallel genetic algorithms.
Proceeding of the Genetic and Evolutionary
Computation Conference, pages 525–532, 1999.

[3] D.Whitley, K. Mathias, S. Rana, and J. Dzubera.
Building better test functions. International Congress
on Genetic Algorithms, 1995.

[4] I. Foster and C. Kesselman. The grid: Blueprint for a
new computing infrastructure. Morgan Kaufmann,
1998.

[5] W. Gropp, E. Lusk, and R. Thakur. Using mpi-2.
Using MPI-2, 1999.

[6] G.Shao, F.Berman, and R.Wolski. Master/slave
computing on the grid. ”Proceedings of the 9th
Heterogeneous Computing Workshop, pages 3–16,
2000.

[7] H.Imade, R.Morishita, I.Ono, and M.okamoto. A
framework of grid-oriented genetic algorithms for
large-scale optimization in bioinformatices. 2003
Congress on Evolutionary Computation, pages
623–630, 2003.

[8] H.Kita, I.Ono, and S.Kobayashi. Theoretical analysis
of the unimodal normal distribution crossover for
real-coded genetic algorithms. Proc. 1998 IEEE Intr.
Conf. on Evolutionary Computation, pages 529–534,
1998.

[9] H.Satoh, I.Ono, and S.Kobayashi. A new alternation
model of genetic algorithms and its assessment. J. of
Japanese Society for Artificial Intelligence,
12(5):734–744, 1997.

[10] I.Ono and S.Kobayashi. A real-coded genetic
algorithm for function optimization using unimodal
normal distribution crossover. Proc. 7th ICGA, pages
246–253, 1997.

[11] Y.Gong, M.Nakamura, T.Matsumura, and K.Onaga.
A distributed parallel genetic local search with
tree-based migration on irregular network topologies.
IEICE transactions, on Fundamentals of Electronics,
Communications and Computer Sciences,
E87-A(6):1377–1385, JUNE 2004.

1454

